Extensions 1→N→G→Q→1 with N=C4 and Q=C324D6

Direct product G=N×Q with N=C4 and Q=C324D6
dρLabelID
C4×C324D6484C4xC3^2:4D6432,690

Semidirect products G=N:Q with N=C4 and Q=C324D6
extensionφ:Q→Aut NdρLabelID
C4⋊(C324D6) = C123S32φ: C324D6/C3×C3⋊S3C2 ⊆ Aut C4484C4:(C3^2:4D6)432,691

Non-split extensions G=N.Q with N=C4 and Q=C324D6
extensionφ:Q→Aut NdρLabelID
C4.1(C324D6) = C339D8φ: C324D6/C3×C3⋊S3C2 ⊆ Aut C4484C4.1(C3^2:4D6)432,457
C4.2(C324D6) = C3318SD16φ: C324D6/C3×C3⋊S3C2 ⊆ Aut C4484C4.2(C3^2:4D6)432,458
C4.3(C324D6) = C339Q16φ: C324D6/C3×C3⋊S3C2 ⊆ Aut C4484C4.3(C3^2:4D6)432,459
C4.4(C324D6) = C3⋊S34Dic6φ: C324D6/C3×C3⋊S3C2 ⊆ Aut C4484C4.4(C3^2:4D6)432,687
C4.5(C324D6) = C12⋊S312S3φ: C324D6/C3×C3⋊S3C2 ⊆ Aut C4484C4.5(C3^2:4D6)432,688
C4.6(C324D6) = C12.93S32central extension (φ=1)484C4.6(C3^2:4D6)432,455
C4.7(C324D6) = C3310M4(2)central extension (φ=1)484C4.7(C3^2:4D6)432,456
C4.8(C324D6) = C12.95S32central extension (φ=1)484C4.8(C3^2:4D6)432,689

׿
×
𝔽